Poster Number : #2P064

An OpenFOAM-based framework for sCO₂ oxy-fuel combustion using real-fluid based three-feed stream steady laminar flamelet model

Danh Nam Nguyen¹, Jae Hun Lee¹, Chun Sang Yoo¹

1. Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Republic of Korea.

E-mail address : danhnam@unist.ac.kr, † csyoo @unist.ac.kr

Introduction

UDIST

Allam-Fetvedt power cycle (direct-fired supercritical CO₂) $(sCO_2)):$

Source: from https://netpower.com/technology

- Advantages such as high efficiency, zero emission, lower-cost power, and small land usage (> 40% less than similar output natural gas plant) [1].
- Challenging and complicated in its component designs due to extremely high pressure (200-300 atm), highly diluted CO₂ injecting at order of 1000 K, and no experimental data available.
- Lack of research on materials, chemical kinetics, combustion modeling, heat transfer,

Combustion Modeling

 CO_2 effects, etc.,

Previous studies:

- Banuti et al. [2] showed that the flame blow-out at high strain rate, and it is captured well with flamelet progress variable model (FPV). In addition, there is an unexpected deviation from ideal gas behavior for O_2/CH_4 combustion in CO_2 dilution despite the high temperatures, even at the hot reaction zone.
- Indelicato et al. [3] proved that the extension of standard flamelet by means of three-feed stream model can be an efficient approach for the simulation of diluted oxy-fuel nonpremixed combustion.
- To the best of authors' knowledge, there exists no published an OpenFOAM-based framework including three-feed stream steady laminar flamelet model with consideration of real-fluid effects.

> Our objectives:

• Develop a new OpenFOAM-based framework including real-fluid based three-feed stream steady laminar flamelet model for sCO₂ combustion.

$Y_k, h_s (or T)$ $P(Z)P(\chi_{st})$ > Three-feed stream steady laminar flamelet model: β -PDF δ -function

 By introducing a new conserved scalar variable α to account for different mixture compositions in the oxidizer stream [3]:

where $Y_k^{(0)}$ and $Y_k^{(1)}$ are nominal mass fraction of oxidizer and diluent stream.

• Solve for controlling parameters:

 $\alpha = \frac{Y_k|_{Z=0} - Y_k^{(0)}}{Y_k^{(1)} - Y_k^{(0)}};$

 Y_k , h_s (or T)

 $(\tilde{Z}, \tilde{\chi}, \widetilde{Z''^2}, \tilde{\alpha})$ Interpolate

Tabulate Library (4D) **—** • PDF: $\tilde{P}(Z, \chi_{st}, \alpha) = \tilde{P}(Z) \tilde{P}(\chi_{st}) \tilde{P}(\alpha)$

β -PDF δ -function

• Flamelets: $\phi = \phi(Z, \chi_{st}, \alpha)$

2D Axisymmetric, 20,348 hexahedral cells

0.2100

0.1575

0.1050

0.0525

0

x [m]

Results & Discussion

> The OpenFOAM-based developed framework:

• The schematic of the framework:

• List of real-fluid models implemented [4]:

_			
	EoS	Thermodynamic	Transport
_	- Modified	- Basic	- Chung (1998) for μ, λ.
	SRK.	thermodynamic	- Fuller and Takahashi
	- PR	theory (JANAF-	for binary diffusion

- > 3sRflameletFoam vs. 2sRflameletFoam at high pressure (RANS):
 - $2-D CH_4/sCO_2-O_2$ flame at 200 atm: GRI 3.0 Mech., modified SRK, Chung (1998).

BCs

Stream	Composition	T [K]		α	CO ₂
Fuel	$X_{\rm CH4} = 1.0$	300		- 0	0.7900
Oxidizer	$X_{02} = 0.21$	1000	Nominal	0.25	0.8425
	$X_{\rm CO2} = 0.79$		mass	0.50	0.8950
Dilution	$X_{\rm CO2} = 1.0$	1000	fraction	0.75	0.9475
	$(\alpha = 0 \text{ at dilution})$	on stream)		1	1.0

If dilution = Oxidizer, this configuration is valid for both three-feed stream with inlet dilution $\alpha = 0$ and **two-feed** stream model.

 \succ Dilution effect in sCO₂ combustion (RANS) using 3sR flameletFoam:

• $2-D CH_4/sCO_2-O_2$ flame at 200 atm: GRI 3.0 Mech., modified SRK, Chung (1998).

BCs:		
Fuel	Oxidizer	Dilution
$X_{\rm CH4} = 1.0$	$X_{\rm O2} = 0.21$	$X_{\rm O2} = 0$
	$X_{\rm CO2} = 0.79$	$X_{\rm CO2} = 1.0$
T = 300 K	T = 1000 K	T = 1000 K
$U_{\rm fuel} = 15 \text{ m/s}$	$U_{\text{oxid}} = 313 \text{ m/s}$	$U_{\rm dilu} = 0 - 50 \text{ m/s}$
Z = 1	Z = 0	Z = 0
$\alpha =$	lpha = 0	$\alpha = 1$
zeroGradient		

> Validation of 2sR flameletFoam at high pressure:

2-D laminar counterflow CH₄/sCO₂-O₂ flame at 200 atm [4]: GRI 3.0 Mech., modified SRK, Chung (1998).

Acknowledgment

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) MSIT (NRF-2021R1A2C2005606)

References

[1] R. Allam, S. Martin, B. Forrest, J. Fetvedt, X. Lu, D. Freed, G.W. Brown, T.Sasaki, M. Itoh, J. Manning, Energy Proc. 114, pp.5948-5966, 2017.

- [2] D.T. Banuti, L. Shunn, S. Bose, D. Kim, 6th Int. Symp. Sup. CO2 Powe. Cyc., 2018.
- [3] G. Indelicato et al., Combust. Sci. Technol., vol.192, no.11, pp.2028–2049, 2020.
- [4] D.N. Nguyen, K.S. Jung, J.W. Shim, and C.S. Yoo, Comput. Phys. Commun. Vol. 273, pp.108264, 2022.
- [5] R. S. Barlow, Int. Workshop on Measur. and Comput. of Turb. Nonpremixed Flames, Sandia National Lab., 1998.
- [6] H. Muller, F. Ferraro, M. Pfitzner, 8th Int. OpenFOAM Workshop, 2013.