Go to the top

International journal papers

  • 2024
  1. Yu, G.H., Kim, J.H., Chung, S.H., Yoo, C.S., “Direct numerical simulation of the ignition of temporally evolving twin n-heptane jet in an iso-octane/air stream under RCCI combustion-relevant conditions”, in preparation, 2024.
  2. Yu, G.H., Kim, J.H., Chung, S.H., Yoo, C.S., “Ignition characteristics of a temporally evolving water jet in an n-heptane/O2/CO2 stream under oxy-fuel HCCI-relevant combustion conditions: A DNS study”, in preparation, 2024.
  3. Oh, S.Y., Jung, K.S., Yoo, C.S., “A numerical study of the ignition characteristics of nonpremixed methane/hydrogen versus air in a rolled-up vortex”, in preparation, 2024.
  4. Lee, J.M., Hou, Y., Chung, S.H., Yoo, C.S., “An LES study of the ignition characteristics of n-dodecane spray in single-fuel and dual-fuel combustion conditions”, in preparation, 2024.
  5. Kang, S.J.., Park, J., Chung, S.H., Yoo, C.S, “Effect of buoyancy by fuel on flickering mode transition in jet diffusion flames”, submitted, 2024.
  6. Kim, D.J., Park, J., Chung, S.H., Yoo, C.S, “Flame dynamics of nonpremixed coflow DME jets in momentum-driven and buoyancy-momentum-driven regimes”, submitted, 2024.
  7. Kim, S.H., Park, J., Chung, S.H., Yoo, C.S., “Burning characteristics of ethanol droplet suspended on NiCr wire with applied AC electric field”, submitted, 2024.
  8. Nguyen, D.N.,  Yoo, C.S., “3sSLFMFoam: A package for simulations of turbulent non-premixed flames using three-feed stream steady laminar flamelet model in OpenFOAM”, submitted, 2024.
  9. Lee, J.M., Lee, H., Park, J., Chung, S.H., Yoo, C.S., “An LES study of combustion and NOx emission characteristics of turbulent premixed flames of CH4/NH3/air in a two-stage swirl combustor”, submitted, 2024.
  10. Kim, S.H., Park, J., Chung, S.H., Yoo, C.S., “Dynamic behaviors of burning droplet suspended on NiCr-wire with applied AC electric field”, in revision, 2024.
  11. Nguyen, D.N.,  Yoo, C.S., “An OpenFOAM-based solver for modeling low Mach number turbulent flows at high pressure with real-fluid effects”, in revision, 2024.
  12. Li, H., Lv, J. Zhang, X., Lee, J.M., Yoo, C.S., Chung, S.H., Hu, L., Volumetric heat release, fuel-air mixing and turbulent dissipation of vertically-downward turbulent nonpremixed jet flames under sub-atmospheric pressures”, in revision, 2024.
  13. Kim, D.J., Oh, S.Y., Yoo, C.S., Park, J., Chung, S.H., “Non-monotonic liftoff height behaviors in laminar nonpremixed coflow jet flames of DME with ambient temperature variation”, Proc. Combust. Inst. 40, 105210, 2024, https://doi.org/10.1016/j.proci.2024.105210.
  14. Kim, J., Lee, H., Lee, J.M., Park, J., Chung, S.H., Yoo, C.S., “Effects of the secondary air on the combustion characteristics of turbulent premixed CH4/NH3/air flames in a two-stage swirl combustor”, Proc. Combust. Inst. 40, 105298, 2024, https://doi.org/10.1016/j.proci.2024.105298.
  15. Lee, H., Lee, J.M., Park, J., Chung, S.H., Yoo, C.S., “Flame characteristics and NO emission behaviors of methane/ammonia counterflow premixed flames with opposed N2 or air stream”, Fuel 370, 131851, 2024, https://doi.org/10.1016/j.fuel.2024.131851.
  16. Kim, G.T., Park, J., Chung, S.H., Yoo, C.S., “Synergistic effect of non-thermal plasma and CH4 addition on turbulent NH3/air premixed flames in a swirl combustor”, Int. J. Hydrog. Energy 49, 521-532, 2024, https://doi.org/10.1016/j.ijhydene.2023.08.213.
  • 2023
  1. Velidi, G., Yoo, C.S., “A review on flame stabilization technologies for UAV micro-meso scale combustors: Progress and challenges”, Energies 16, 3968, 2023,  https://www.mdpi.com/1996-1073/16/9/3968.
  2. Kim, G.T., Park, J., Chung, S.H., Yoo, C.S., “Effects of water vapor addition on downstream interaction in CO/O2 flames”, Fuel 342, 127888, 2023, https://doi.org/10.1016/j.fuel.2023.127888.
  • 2022
  1. Kim, G.T., Park, J., Chung, S.H., Yoo, C.S., “Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor”, Fuel 323, 124227, 2022, https://doi.org/10.1016/j.fuel.2022.124227.
  2. Kang, M.S., Park, J., Chung, S.H., Yoo, C.S., “Effect of the thickness of polyethylene insulation on flame spread over electrical wire with Cu-core under AC electric fields”, Combust. Flame 240,  112017, 2022, https://doi.org/10.1016/j.combustflame.2022.112017.
  3. Nguyen, D.N., Jung, K.S., Shim, J.W., Yoo, C.S., “Real-fluid thermophysicalModels library: An OpenFOAM-based library for reacting flow simulations at high pressure”, Comput. Phys. Commun. 273, 108264, 2022, https://doi.org/10.1016/j.cpc.2021.108264.
  4. Jung, K.S., Kwon, S.H., Chung, S.H., Park, J., Yoo, C.S., “Flame edge dynamics in counterflow nonpremixed flames of  CH4/He versus air at low strain rates: An experimental and numerical study”, Combust. Flame 235, 111718, 2022, https://doi.org/10.1016/j.combustflame.2021.111718.
  • 2021
  1. Kim, J.H., Yu, G.H., Chung, S.H., Yoo, C.S., “A DNS study of ignition characteristics of a lean PRF/air mixture with CH2O and H2O2 addition under HCCI conditions”, Combust. Flame, 234, 111654, 2021, https://doi.org/10.1016/j.combustflame.2021.111654.
  2. Jung, K.S., Kim, S.O., Lu, T., Chen, J.H., Yoo, C.S., “On the stabilization mechanisms of turbulent lifted hydrogen jet flames in heated coflows near the auto-ignition limit: A comparative DNS study”, Combust. Flame 233, 111584, 2021, https://doi.org/10.1016/j.combustflame.2021.111584.
  3. Jung, K.S., Bak, H.S., Nguyen, D.N., Lee, B.J., Yoo, C.S., “NOx emission characteristics of CH4 versus O2/CO2 counterflow non-premixed flames at various pressures up to 300 atm”, Fuel 299, 120411, 2021, https://doi.org/10.1016/j.fuel.2021.120411.
  4. Shin, K.-Y., Kang, M., Kim, M.-K., Kang, K. Jung, K.S., Yoo, C.S., Lee, S.-H., “Large area organic thin film coating using a micro multi-nozzle jet head with side suction channels”, Int. J. Pr. Eng. Man-GT. 8, 829–840, 2021, https://doi.org/10.1007/s40684-021-00334-7.
  5. Kang, M.S., Park, S.H., Yoo, C.S., Park, J., Chung, S.H., “Effects of metal core on flame spread over electrical wire with applied AC electric fields”, Proc. Combust. Inst. 38, 4747-4756, 2021, https://doi.org/10.1016/j.proci.2020.05.060.
  6. Oh, S.,Van, K.H., Jung, K.S., Yoo, C.S., Cha, M.S., Chung, S.H., Park, J., “On the characteristics of oscillating lifted flames in nonpremixed laminar coflow jets: An experimental and numerical study”, Proc. Combust. Inst. 38,  2049-2056, 2021, https://doi.org/10.1016/j.proci.2020.06.355.
  7. Van, K.H., Oh, S., Yoo, C.S., Park, J., Chung, S.H., “Effects of Schmidt number on non-monotonic liftoff height behavior in coflow-jet flames with diluted methane and ethylene”, Proc. Combust. Inst. 38, 1913-1921, 2021, https://doi.org/10.1016/j.proci.2020.06.344.
  8. Jung, K.S., Kim, S.O., Chung, S.H., Yoo, C.S., “On the flame structure and stabilization characteristics of autoignited laminar lifted n-heptane jet flames in heated coflow air”, Combust. Flame 223, 307 -319, 2021, https://doi.org/10.1016/j.combustflame.2020.10.008. 
  • 2020
  1. Oh, S., Van, K.H., Yoo, C.S., Chung, S.H., Park, J., “Effects of diluents on the lifted flame characteristics in laminar nonpremixed coflow propane jets”, Combust. Flame 222, 145-151, 2020, https://doi.org/10.1016/j.combustflame.2020.08.044.
  2. Chang, S.H., Bak, H.S., Yu, H., Yoo, C.S., “A numerical study of combustion and NOx emission characteristics of a model gas turbine combustor”, J. Mech. Sci. Technol. 34 (4), 1795-1803, 2020, http://doi.org/10.1007/s12206-020-0341-y.
  3. Kim, H.J., Van, K., Lee, D.K., Yoo, C.S., Park, J., Chung, S.H., “Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames”,  Combust. Flame 214, 464-474, 2020, https://doi.org/10.1016/j.combustflame.2020.01.011. 
  4. Seo, H.W., Jung, N., Yoo, C.S., “Oscillation dynamics of colloidal particles caused by surfactant in an evaporating droplet”, J. Mech. Sci. Technol. 34 (2), 801-807, 2020, http://doi.org/10.1007/s12206-020-0128-1.
  5. Kim, G.T., Yoo, C.S., Chung, S.H., Park, J.,  “Effects of non-thermal plasma on the lean blowout limits and CO/NOx emissions in swirl-stabilized turbulent lean-premixed flames of methane/air”, Combust. Flame 212, 403-414, 2020, https://doi.org/10.1016/j.combustflame.2019.11.024.
  • 2019
  1. Jung, K.S., Jung, B.R., Kang, S. H., Chung, S.H., Yoo, C.S., “A numerical study of pyrolysis effects on autoignited laminar lifted dimethyl ether jet flames in heated coflow air”, Combust. Flame 209, 225-238, 2019, https://doi.org/10.1016/j.combustflame.2019.07.042.
  2. Yu, G.H., Luong, M.B., Chung, S.H., Yoo, C.S., “Ignition characteristics of a temporally evolving n-heptane jet in an iso-octane/air stream under RCCI combustion-relevant conditions”,  Combust. Flame 208, 299-312, 2019, https://doi.org/10.1016/j.combustflame.2019.07.011.
  3. Xu, C., Park, J.,  Yoo, C.S., Chen, J.H., Lu, T., “Identification of premixed flame propagation modes using chemical explosive mode analysis”, Proc. Combust. Inst. 37, 2407-2415, 2019,  http://dx.doi.org/10.1016/j.proci.2018.07.069.
  4. Van, K., Jung, K.S., Yoo, C.S., Oh, S., Lee, B.J., Cha, M.S., Park, J., Chung, S.H., “Decreasing Liftoff Height Behavior in Diluted Laminar Lifted Methane Jet Flames”, Proc. Combust. Inst. 37, 2005-2012, 2019, http://dx.doi.org/10.1016/j.proci.2018.05.031.
  • 2018
  1. Jung, K.S., Kim, S.O., Lu, T., Chung, S.H., Lee, B.J., Yoo, C.S., “Differential diffusion effect on the stabilization characteristics of autoignited laminar lifted methane/hydrogen jet flames in heated coflow air”, Combust. Flame 198, 305-319, 2018, http://dx.doi.org/10.1016/j.combustflame.2018.09.026.
  2. Bak, H.S. Yoo, C.S., “Flame instabilities and flame cell dynamics in opposed nonpremixed tubular flames with radiative heat loss”, Combust. Flame 194, 322-333, 2018, http://dx.doi.org/10.1016/j.combustflame.2018.05.012.
  • 2017
  1. Jung, N., Seo, H.W., Leo, P., Kim, J., Kim, P., Yoo, C.S., “Surfactant effects on droplet dynamics and deposition patterns: A lattice gas model”, Soft Matter 13, 6529-6541, 2017, http://dx.doi.org/10.1039/C7SM01224A.
  2. Luong, M.B., Sankaran, R., Yu, G.H., Chung, S.H., Yoo, C.S., “On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions”, Combust. Flame 183, 309-321, 2017, http://dx.doi.org/10.1016/j.combustflame.2017.05.023.
  3. Kang, S., Yoo, C.S. “A modification of the narrow band based WSGG regrouping method for computation time reduction in non-gray gas radiation”, Int. J. Heat Mass Transf. 111, 1314-1321, 2017, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.091.
  4. Luong, M.B., Yu, G.H., Chung, S.H., Yoo, C.S., “Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: A comparative DNS study”, Proc. Combust. Inst. 36, 3623–3631, 2017, http://dx.doi.org/10.1016/j.proci.2016.08.038.
  5. Luong, M.B., Yu, G.H., Chung, S.H., Yoo, C.S., “Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: Chemical aspects”, Proc. Combust. Inst. 36, 3587–3596, 2017, http://dx.doi.org/10.1016/j.proci.2016.06.076.
  6. Salehi, F., Talei, M., Hawkes, E.R., Bhagatwala, A., Chen, J.H., Yoo, C.S., Kook, S., “Doubly conditional moment closure modelling for HCCI with temperature inhomogeneities”, Proc. Combust. Inst. 36, 3677-3685, 2017, http://dx.doi.org/10.1016/j.proci.2016.05.021.
  • 2015
  1. Bak, H.S., Lee, S.R., Chen, J.H, Yoo, C.S. “A numerical study of the diffusive-thermal instability of opposed nonpremixed tubular flames”, Combust. Flame 162, 4612-4621, 2015, http://dx.doi.org/10.1016/j.combustflame.2015.09.019.
  2. Luong, M.B., Yu, G.H., Lu, T., Chung, S.H., Yoo, C.S., “Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relavant to HCCI and SCCI combustion”, Combust. Flame 162, 4566-4585, 2015,  http://dx.doi.org/10.1016/j.combustflame.2015.09.015.
  3. Jung, N., Seo, H.W., Yoo, C.S., “Two-dimensional characteristic boundary conditions for open boundaries in the lattice Boltzmann methods”, J. Comput. Phys. 302, 191-199, 2015, http://dx.doi.org/10.1016/j.jcp.2015.08.044.
  4. Sankaran, R., Hawkes, E.R., Yoo, C.S., Chen, J.H., “Response of flame thickness and propagation speed under intense turbulence in spatially developing and stationary lean premixed methane-air jet flames”, Combust. Flame 162, 3294-3306, 2015, http://dx.doi.org/10.1016/j.combustflame.2015.05.019.
  5. Salehi, F., Talei, M., Hawkes, E.R., Yoo, C.S., Lucchini, T., D’Errico, G., Kook, S., “A comparative study of conditional moment closure modelling for ignition of iso-octane and n-heptane in thermally stratified mixtures”, Flow Turbul. Combust. 95, 1-28, 2015, http://dx.doi.org/10.1007/s10494-015-9604-6.
  6. Lee, B.J., Yoo, C.S., Im, H.G., “Dynamics of bluff-body-stabilized premixed hydrogen/air flames in a narrow channel”, Combust. Flame 162, 2602-2609, 2015, http://dx.doi.org/10.1016/j.combustflame.2015.03.009.
  7. Kim, S.O., Luong, M.B., Chen, J.H., Yoo, C.S. “A DNS Study of Ignition of Lean PRF/Air Mixtures with Temperature Inhomogeneities under High Pressure and Intermediate Temperature”, Combust. Flame 162, 717–726, 2015, http://dx.doi.org/10.1016/j.combustflame.2014.09.001.
  8. Xin, Y.X., Yoo, C.S., Chen, J.H., Law, C.K., “A DNS Study of Self-Accelerating Cylindrical Hydrogen-Air Flame with Detailed Chemistry”, Proc. Combust. Inst. 35, 753-760, 2015, http://dx.doi.org/10.1016/j.proci.2014.06.076.
  9. Salehi, F., Talei, M., Hawkes, E.R., Yoo, C.S., Lucchini, T., D’Errico, G., Kook, S., “Conditional Moment Closure Modelling for HCCI with Temperature Inhomogeneities”, Proc. Combust. Inst. 35, 3087-3095, 2015, http://dx.doi.org/10.1016/j.proci.2014.05.035.
  • 2014
  1. Luong, M. B., Lu, T., Chung, S.H., Yoo, C.S., “Direct Numerical Simulations of Ignition of a Lean Biodiesel/Air Mixture with Temperature and Composition Inhomogeneities”, Combust. Flame 161, 2878-2889, 2014, http://dx.doi.org/10.1016/j.combustflame.2014.05.004.
  2. Jung, N., Yoo, C.S., Leo, P. H., “Instability Deposit Patterns in an Evaporating Droplet”, J. Phys. Chem. B 118, 2535−2543, 2014, http://dx.doi.org/10.1021/jp4111844.
  • 2013
  1. Luong, M.B., Luo, Z., Lu, T., Chung, S. H., Yoo, C.S., “Direct Numerical Simulations of Ignition of Lean Primary Reference Fuel/Air Mixtures with Temperature Inhomogeneities”, Combust. Flame 160, 2038-2047, 2013, http://dx.doi.org/10.1016/j.combustflame.2013.04.012.
  2. Yoo, C.S., Luo, Z., Lu, T., Kim, H., Chen, J.H., “A DNS Study of Ignition Characteristics of a Lean iso-Octane/Air Mixture under HCCI and SACI Conditions”, Proc. Combust. Inst. 34, 2985-2993, 2013, http://dx.doi.org/10.1016/j.proci.2012.05.019.
  • 2012
  1. Shan, R., Yoo, C.S., Chen, J.H., Lu, T., “Computational Diagnostics for n-Heptane Flames with Chemical Explosive Mode Analysis”, Combust. Flame 159, 3119-3127, 2012, http://dx.doi.org/10.1016/j.combustflame.2012.05.012.
  2. Luo, Z., Yoo, C.S., Richardson, E.S., Chen, J.H., Law, C.K., and Lu, T., “Chemical Explosive Mode Analysis for a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow”, Combust. Flame 159, 265-274, 2012, http://dx.doi.org/10.1016/j.combustflame.2011.05.023.
  • 2011
  1. Yoo, C.S., Lu, T., Chen, J.H., Law, C. K., “Direct Numerical Simulations of Ignition of a Lean n-Heptane/Air Mixture with Temperature Inhomogeneities at Constant Volume: Parametric Study”, Combust. Flame 158, 1727-1741, 2011, http://dx.doi.org/10.1016/j.combustflame.2011.01.025.
  2. Yoo, C.S., Sankaran, R., Richardson, E.S., Chen, J.H., “A DNS Study of a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow”, Proc. Combust. Inst. 33, 1619-1627, 2011, http://dx.doi.org/10.1016/j.proci.2010.06.147.
  3. Grout, R.W., Gruber, A., Yoo, C.S., Chen, J.H., “Direct Numerical Simulation of Flame Stabilization Downstream of a Transverse Fuel Jet in Cross Flow”, Proc. Combust. Inst. 33, 1629-1637, 2011, http://dx.doi.org/10.1016/j.proci.2010.06.013.
  • 2010
  1. Lu, T., Yoo, C.S., Chen, J.H., Law, C.K., “Three-dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow. An Explosive Mode Analysis”, J. Fluid Mech. 652, 45-64, 2010, http://dx.doi.org/10.1017/S002211201000039X.
  2. Lee, U.D., Yoo, C.S., Chen, J.H., Frank, J.H., “Effect of NO on Extinction and Re-ignition of Vortex-Perturbed Hydrogen Flames”, Combust. Flame 157, 217-229, 2010, http://dx.doi.org/10.1016/j.combustflame.2009.10.014.
  • 2009
  1. Yoo, C.S., Sankaran, R., Chen, J.H.* “Three-dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: Flame Stabilization and Structure”, J. Fluid Mech. 640, 453-481, 2009, http://dx.doi.org/10.1017/S0022112009991388.
  2. Lu, T., Law, C.K., Yoo, C.S., Chen, J.H., “Dynamics Stiffness Removal for Direct Numerical Simulations”, Combust. Flame 156, 1542-1551, 2009, http://dx.doi.org/10.1016/j.combustflame.2009.02.013.
  3. Yoo, C.S., Chen, J.H., Frank, J.H., “A Numerical Study of Transient Ignition and Flame Characteristics of Diluted Hydrogen versus Heated Air in Counterflow”, Combust. Flame 156, 140-151, 2009, http://dx.doi.org/10.1016/j.combustflame.2008.07.012.
  4. Lee, U.D., Yoo, C.S., Chen, J.H., Frank, J.H., “Effect of H2O and NO on Extinction and Re-ignition of Vortex-Perturbed Hydrogen Flames in Counterflow”, Proc. Combust. Inst. 32, 1059-1066, 2009, http://dx.doi.org/10.1016/j.proci.2008.06.150.
  5. Richardson, E.S., Yoo, C.S., Chen, J.H., “Analysis of Conditional Moment Closure Applied to Autoignitive Lifted Hydrogen Jet Flame”, Proc. Combust. Inst. 32, 1695-1703, 2009, http://dx.doi.org/10.1016/j.proci.2008.05.041.
  6. Mascarenhas, A., Grout, R.W., Yoo, C.S., Chen, J.H., “Tracking Flame Base Movement and Interaction with Ignition Kernels Using Topological Methods”, SciDAC 2009: Scientific Discovery Through Advanced Computing 180, 012086, 2009, http://dx.doi.org/10.1088/1742-6596/180/1/012086.
  7. Chen, J.H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorski, N., Sankaran, R., Yoo, C.S., “Terascale Direct Numerical Simulations of Turbulent Combustion using S3D”, Comput. Sci. Disc. 2, 015001, 2009, http://dx.doi.org/10.1088/1749-4699/2/1/015001.
  • Before 2009
  1. Chen, J.H., Yoo, C.S., Sankaran, R, Oefelein, J.C., “High-Fidelity Simulations for Clean and Efficient Combustion of Alternative Fuels”, SciDAC 2008: Scientific Discovery Through Advanced Computing 125, 012028, 2008, http://dx.doi.org/10.1088/1742-6596/125/1/012028.
  2. Im, H.G., Trouvé, A., Rutland, C.J, Arias, P.G., Narayanan, P., Srinivasan, S., Yoo, C.S., “Direct Numerical Simulation of Turbulent Counterflow Nonpremixed Flames”, SciDAC 2007: Scientific Discovery Through Advanced Computing 78, 102029, 2007, http://dx.doi.org/10.1088/1742-6596/78/1/012029.
  3. Yoo, C.S., Im, H.G., “Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous, and reaction effects”, Combust. Theory Modelling 11, 259-286, 2007, http://dx.doi.org/10.1080/13647830600898995.
  4. Yoo, C.S., Im, H.G., “Transient Soot Dynamics in Turbulent Nonpremixed Ethylene-Air Counterflow Flames”, Proc. Combust. Inst. 31, 701-708, 2007, http://dx.doi.org/10.1016/j.proci.2006.08.090.
  5. Yoo, C.S., Im, H.G., Wang, Y., Trouvé, A., “Interaction of Turbulence, Chemistry, and Radiation in Strained Nonpremixed Flames”, SciDAC 2005: Scientific Discovery Through Advanced Computing 16, 91-100, 2005, http://dx.doi.org/10.1088/1742-6596/16/1/011.
  6. Yoo, C.S., Wang, Y., Trouvé, A., Im, H.G., “Characteristic boundary conditions for direct numerical simulations of turbulent counterflow flames”, Combust. Theory Modelling 9, 617-646, 2005, http://dx.doi.org/10.1080/13647830500307378.
  7. Yoo, C.S., Im, H.G., “Transient Dynamics of Edge Flames in a Laminar Nonpremixed Hydrogen-Air Counterflow”, Proc. Combust. Inst. 30, 349-356, 2005, http://dx.doi.org/10.1016/j.proci.2004.08.052.
  8. Yoo, C.S., Lee, S.D., Chung, S.H., “Extinction of Strained Premixed Flames of Hydrogen/Air/Steam Mixture: Local Equilibrium Temperature and Local Equivalence ratio”, Combust. Sci. Tech. 155, 227-245, 2000, http://dx.doi.org/10.1080/00102200008947291.